Curba lui Koch

Un alt matematician, Helge von Koch, a creat o constructie matematica numita Curba lui Koch. Pentru a crea curba lui Koch, imaginati-va un triunghi echilateral. Acuma adaugati pe fiecare latura un alt triunghi echilateral si continuati sa adaugati pe fiecare din laturile triunghiurilor un alt triunghi echilateral, ceea ce rezulta e o curba Koch. Orice parte a ei, marita, arata exact ca originalul. Aceasta e o figura autosimilara. Curba lui Koch prezinta un paradox interesant. De fiecare data cand un nou triunghi este adaugat la figura centrala, lungimea liniei creste. Dar aria interioara a curbei lui Koch ramane mai mica decat aria unui cerc desenat in jurul triunghiului original. In esenta, este o linie de o lungime infinita ce inconjoara o zona finita.






Efectul Fluture

Acest efect se mai numeste si “efectul fluture” si se refera la diferenta dintre punctele de pornire ale celor doua curbe din grafic care e atat de mica incat poate fi comparata cu bataia aripilor unui fluture.
“Miscarea aripilor unui fluture azi poate produce o mica schimbare a atmosferei. Din aceasta cauza si de-a lungul unei anumite perioade de timp, atmosfera se va schimba. Peste o luna poate, o tornada care trebuia sa loveasca coasta Indoneziei nu va mai aparea. Sau din contra, tocmai din aceasta cauza va aparea.”
Acest fenomen este cunoscut mai ales pentru dependenta sa de conditiile initiale. Cea mai mica schimbare a conditiilor initiale duce la rezultate complet diferite. Aceasta schimbare poate proveni de la zgomot experimental sau de fond, lipsa de acuratete a instrumentelor, etc. Acest gen de probleme sunt imposibil de evitat, chiar si in cel mai performat si dotat laborator existent. Daca folosim ca baza a experimentului numarul 2, rezultatul va fi complet diferit fata de experimentul in care folosim 2.0000001. Un asemenea nivel de acuratete e imposibil – incercati sa masurati 0.0000001 cm.
Un exemplu de sistem complet dependent de conditiile initiale e aruncarea unei monede. Exista doua variabile in aruncarea unei monede: cat de repede loveste pamantul si cat de repede se roteste. Teoretic, este posibil sa controlam aceste variabile, astfel reusind sa stabilim ce fata va cadea in sus. Practic, e imposibil de controlat in mod exact viteza de rotatie a monedei si inaltimea la care e aruncata. Este posibil sa stabilim o medie ai acestor parametri, dar e imposibil ca in baza lor sa facem estimari exacte asupra rezultatului final. Aceasta problema poate fi regasita in biologie la estimarea populatiilor biologice. Ecuatia ar fi simpla daca acele populatii doar ar creste, dar efectul pradatorilor si a rezervei limitate de hrana schimba totul.